Trigonometry: Angles

Objectives of this Presentation:

- Build basic definitions of angles as built on the coordinate plane.
-Learn how to measure both positive \& negative angles
-Convert Between Degrees, Minutes, Seconds, and Decimal Forms for Angles
- Convert From Degrees to Radians, Radians to Degrees

A ray, or half-line, is that portion of a line that starts at a point V on the line and extends indefinitely in one direction. The starting point V of a ray is called its vertex.

V Ray

If two lines are drawn with a common vertex, they form an angle. One of the rays of an angle is called the initial side and the other the terminal side.

Vertex
Initial Side
Counterclockwise rotation
Positive Angle

Clockwise rotation
Negative Angle

Counterclockwise rotation Positive Angle

An angle θ is said to be in standard position if its vertex is at the origin of a rectangular coordinate system and its initial side coincides with with positive x-axis.

When an angle θ is in standard position, the terminal side either will lie in a quadrant, in which case we say θ lies in that quadrant, or it will lie on the x-axis or the y-axis, in which case we say θ is a quadrantal angle.

θ is a quadrantal angle

θ lies in Quadrant III

Angles are commonly measured in either Degrees or Radians

The angle formed by rotating the initial side exactly once in the counterclockwise direction until it coincides with itself (1 revolution) is said to measure 360 degrees, abbreviated 360°.

A right angle is an angle of 90°, or $\frac{1}{4}$ revolution.

A straight angle is an angle of 180°,

or $\frac{1}{2}$ revolution.

Terminal side \quad Vertex \quad Initial side

$$
180^{\circ} \text { angle; } \frac{1}{2} \text { revolution }
$$

Draw a - 135° angle.

Because angles "rotate", they can revolve around more than once. Shown here is a 400° angle.
I Revolution

Smaller Measures

- Angles measured in degrees is a standard unit of measure.
- When we need units smaller than degrees, they are called "Minutes" and "seconds", modeled after our clock.
$\square 1$ Revolution $=360^{\circ}$ OR $1 / 360^{\text {th }}$ revolution $=1^{\circ}$

One minute, denoted, 1^{\prime}, is defined as
1
degree.
60
One second, denoted, $1^{\prime \prime}$, is defined as
$\frac{1}{60}$ second, or $\frac{1}{3600}$ degree.

1 counterclockwise revolution $=360^{\circ}$

$$
60^{\prime}=1^{\circ} \quad 60^{\prime \prime}=1^{\prime}
$$

Sometimes we need to convert between decimal degrees (d.d.) and Degrees-Minutes-Seconds (D.M.S.)

Convert $30^{\circ} 12^{\prime} 55^{\prime \prime}$ to a decimal in degrees.

$$
\begin{aligned}
30^{\circ} 12^{\prime} 55^{\prime \prime} & =\left(30+12 \cdot \frac{1}{60}+55 \cdot \frac{1}{3600}\right)^{\circ} \\
& =(30+0.2+0.015278)^{\circ} \\
& =30.215278^{\circ}
\end{aligned}
$$

Convert 45.413° to $\mathrm{D}^{\circ} \mathrm{M}^{\prime} \mathrm{S}^{\prime \prime}$ form.

$$
\begin{aligned}
& 0.413^{\circ}=0.413^{\circ} \cdot \frac{60^{\prime}}{1^{\circ}}=24.78^{\prime} \\
& 0.78^{\prime}=0.78^{\prime} \cdot \frac{60^{\prime \prime}}{1^{\prime}}=46.8^{\prime \prime} \approx 47^{\prime \prime} \\
& 45.413^{\circ}=45^{\circ} 24^{\prime} 47^{\prime \prime}
\end{aligned}
$$

APPLICATION - NAVIGATION "Bearing"

